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1. Introduction

The AdS/CFT correspondence and the counting of microstates of black holes in string

theory provide a substantial amount of evidence that gravity is thermodynamic in nature,

and that classical gravity arises by coarse graining over a (large number of) microstates.

This point of view was elaborated in [1] for large black holes in AdS5 and also for 1/2 BPS

geometries that asymptote to AdS5 × S5, following the work of [2] (for related work see

also [3 – 12]). In the 1/2 BPS case one can develop a precise map between microstates and

geometries and study the coarse graining in detail. The Hilbert space is that of N free

fermions in an harmonic oscillator potential, and given a state or ensemble in that Hilbert

space one can associate a classical phase space density to it. This phase space density,

a function on a two-dimensional plane, then completely determines the ten-dimensional

metric. Using this setup one finds, as expected, that almost all states are typical, i.e. very

similar to the ensemble average, and very difficult to distinguish from each other.

The purpose of this paper is to generalize and study the map between 1/2 BPS states

and geometries to the AdS3 case. Many aspects of this system were previously studied
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in [13 – 26]. The AdS3 case is interesting, as it has a somewhat richer structure, harbors

many well-known solutions such as conical defect metrics, the BTZ black hole and black

rings, and plays an important role in most of the microscopic derivations of black hole

entropy. It is also the context in which Mathur formulated his fuzzball picture of black

holes (see e.g. [20]). Though there are no macroscopic 1/2 BPS black holes in AdS3 we will

encounter several black-hole like features in our description. As we will show, the technical

details are quite different from the AdS5 case.

The relevant 1/2-BPS geometries were obtained by dualizing solutions describing clas-

sical string profiles in [15]. The classical string profile corresponds to a certain parametrized

curve F(s) ⊂ R
4. This is not yet the most general solution, as the string can also oscillate

in four other transversal directions, which we take to be a four-torus, and in addition has

fermionic excitations (studied in [22]). However, in our paper, we will not consider these

additional degrees of freedom.

The classical phase space of gravitational solutions is the set of curves F(s) of fixed

“length” N ∼
∫

ds|Ḟ(s)|2. The symplectic form on the phase space was derived in [25, 26].

From this one infers that the Fourier modes of F correspond to standard free bosonic

string oscillators without the zero mode, with the length corresponding to the energy or

L0 eigenvalue of a state. The Hilbert space in question is therefore the set of states of

level N in the Hilbert space of four free bosons. To a state or density matrix in this

Hilbert space we will associate a phase space density which is a measure on the space

of loops of fixed length. This measure will then be used to construct the explicit 1/2

BPS metric. Quantizing a subset of the degrees of freedom of the metric is a familiar

procedure as all minisuperspace approaches to quantum gravity use exactly the same idea.

The usual complaint about minisuperspace approximations is that the approximation is

not controlled, i.e. it is not the leading term of the expansion in some small parameter.

The same complaint in principle also applies to our construction, though supersymmetry

will make the results more robust, and we believe that in view of the similarity with e.g.

the discussion of large black holes in AdS5 in [1] we are still learning valuable lessons about

quantum gravity despite the 1/2-BPS restriction.

This paper is organized as follows. The details of the map between microstates and

geometries will be discussed in section 2. Coherent states will play an important role,

and we will also discuss some subtleties associated to the choice of phase space density.

Furthermore, we consider in detail the case of a circular profile, showing that for large

quantum numbers the geometry given by our map differs by a small correction from that

corresponding to a classical circular curve.

In section 3 we will show how we can use our setup to construct a class of generalized

conical defect metrics, which include conical defect metrics with deficit angle 2π/n with n

integer. We will also confirm the claim of [18] that metrics with deficit angle α = 2π/n

with n not an integer cannot be constructed in this way, and our new metrics are the best

approximation to conical deficit metrics with such values of α.

In section 4 we study the metrics associated with various ensembles, in particular for

the M = 0 BTZ black hole, small black rings and generic thermal ensembles in absence

of a condensate. For the M = 0 BTZ black hole we will find that the area of the surface
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(the ‘stretched horizon’) within which the metric differs significantly from that of the

M = 0 BTZ black hole yields an entropy proportional to N3/4, whereas the logarithm of

the number of states scales as N1/2. Thus, typical states are larger than what one would

expect from a naive fuzzball picture of black holes, and we will discuss possible implications

of this observation.

The ensembles we study are all of the form ρ ∼ exp(−∑

i aiOi). For these, the entropy

obeys

dS =
∑

i

aid〈Oi〉 (1.1)

and such ensembles are therefore the most natural candidate dual descriptions of black

objects that obey the first law. We will indeed find a rather universal behavior in the

ensembles that we study, including the ensemble that we proposed as dual description of

the small black ring in [24].

Some concluding remarks and open problems are finally given in section 5.

2. The map betweeen states and geometries

2.1 Conventions

We will follow the conventions of [26]. By dualizing a fundamental string with transversal

profile F(s) ⊂ R
4 we obtain the following microstate geometries of the D1 − D5 system,

written in string frame

ds2 =
1√
f1f5

[

−(dt + A)2 + (dy + B)2
]

+
√

f1f5dx
2 +

√

f1/f5dz
2

e2Φ =
f1

f5
, C =

1

f1
(dt + A) ∧ (dy + B) + C

dB = ∗4dA, dC = − ∗4 df5 (2.1)

f5 = 1 +
Q5

L

∫ L

0

ds

|x − F(s)|2 (2.2)

f1 = 1 +
Q5

L

∫ L

0

|F′(s)|2ds

|x − F(s)|2

A =
Q5

L

∫ L

0

F ′
i (s)ds

|x− F(s)|2 (2.3)

The solutions are asymptotically R
1,4×S1×T 4, y parametrizes the S1 which has coordinate

radius R, and z are coordinates on the T 4 which has coordinate volume V4. The Hodge

duals ∗4 are defined with respect to the four non-compact transversal coordinates x. We

can take a decoupling limit which simply amounts to erasing the 1 from the harmonic

functions. The resulting metric will then be asymptotically equal to AdS3 × S3 × T 4.

As mentioned above, the solutions are parametrized in terms of a closed curve

xi = Fi(s), 0 < s < L, i = 1, . . . , 4. (2.4)

and we will ignore oscillations in the T 4 direction as well as fermionic excitations in this

paper.
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The number of D1 and D5 branes is denoted by N1 and N5, and they are related to

the charges Qi by

Q5 = gsN5 Q1 =
gs

V4
N1

The parameter L has to satisfy

L =
2πQ5

R
. (2.5)

Besides, the curve has to satisfy the following relation

Q1 =
Q5

L

∫ L

0
|F′(s)|2ds (2.6)

which reflects the fact that the original string had a fixed length. It turns out that the

space of classical solutions has finite volume and therefore will yield a finite number of

quantum states. Indeed, expanding F in oscillators:

F(s) = µ

∞
∑

k=1

1√
2k

(

cke
i 2πk

L
s + c

†
ke

−i 2πk
L

s
)

(2.7)

where

µ =
gs

R
√

V4
(2.8)

it was first shown in [25] (see also [26]) by computing the restriction of the Poisson bracket

to the space of solutions (2.1) that

[ci
k, cj†

k′ ] = δijδkk′ (2.9)
〈∫ L

0
: |F′(s)|2 : ds

〉

=
(2π)2

L
µ2N (2.10)

N ≡ N1N5 =

∞
∑

k=1

k
〈

c
†
kck

〉

. (2.11)

Clearly, the number of states is finite. Using the above quantum mechanical system, we

can now go ahead and construct a map between the quantum states of the theory and

classical field configurations. As familiar from quantum mechanics, this map will involve

the phase space distribution associated to quantum states.

2.2 Proposal for the map

Chiral primary operators in the dual CFT are in one to one correspondence with the states

at level N of a Fock space built out of 8 bosonic and 8 fermionic oscillators (or 24 bosonic

oscillators if we replace T 4 by K3). Since we are only interested in fluctuations in the

transverse R
4 we will keep only four of the bosons and discard the fermions. The Hilbert

space is thus spanned by

|ψ〉 =
4

∏

i=1

∞
∏

k=1

(ci†
k )Nki |0〉,

∑

kNki
= N (2.12)
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Given a state, or more generically a density matrix in the CFT

ρ =
∑

i

|ψi〉〈ψi| (2.13)

we wish to associate to it a density on phase space. The phase space is given by classical

curves which we will parametrize as (note that d and d̄ are now complex numbers, not

operators)

F(s) = µ

∞
∑

k=1

1√
2k

(

dke
i 2πk

L
s + d̄ke

−i 2πk
L

s
)

(2.14)

and which obey the classical constraint (2.6).

We now propose to associate to a density matrix of the form (2.13) a phase space

density of the form

f(d, d̄) =
∑

i

〈0|edkck |ψi〉〈ψi|ed̄kc
†
k |0〉

〈0|edkcked̄kc
†
k |0〉

. (2.15)

Notice that this phase space density, as written, is a function on a somewhat larger phase

space as d, d̄ do not have to obey (2.6). We will discuss this issue in the next section and

ignore it for now.

The density (2.15) has the property that for any function g(d, d̄)

∫ ∫

d,d̄
f(d, d̄)g(d, d̄) =

∑

i

〈ψi| : g(c, c†) :A |ψi〉 (2.16)

where : g(c, c†) :A is the anti-normal ordered operator associated to g(c, c†), and
∫

d,d̄ is an

integral over all variables di. It is possible to construct other phase densities such as the

Wigner measure where anti-normal ordering is replaced by Weyl ordering, or one where

anti-normal ordering is replaced by normal ordering. Though apparently different, they

will yield identical results if we are interested in computing expectation values of normal

ordered operators. Since the theory behaves like a 1 + 1 dimensional field theory this is

certainly the natural thing to do in order to avoid infinite normal ordering contributions.

Besides, everything we do is limited by the fact that our analysis is in classical gravity and

therefore can at best be valid up to quantum corrections.

To further motivate (2.15) we notice that it associates to a coherent state a density

which is a gaussian centered around a classical curve, in perfect agreement with the usual

philosophy that coherent states are the most classical states. It is then also clear that given

a classical curve (2.14) we wish to associate to it the density matrix

ρ = PNedkck |0〉〈0|ed̄kc
†
kPN (2.17)

where PN is the projector onto the actual Hilbert space of states of energy N as defined

in (2.12). Because of this projector, the phase space density associated to a classical curve

is not exactly a gaussian centered around the classical curve but there are some corrections

due to the finite N projections. Obviously, these corrections will vanish in the N → ∞
limit.
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Since the harmonic functions appearing in (2.1) can be arbitrarily superposed, we

finally propose to associate to (2.13) the geometry

f5 = 1 +
Q5

L
N

∫ L

0

∫

d,d̄

f(d, d̄)ds

|x − F(s)|2

f1 = 1 +
Q5

L
N

∫ L

0

∫

d,d̄

f(d, d̄)|F′(s)|2ds

|x − F(s)|2

Ai =
Q5

L
N

∫ L

0

∫

d,d̄

f(d, d̄)F′
i(s)ds

|x −F(s)|2 (2.18)

with the normalization constant

N−1 =

∫

d,d̄
f(d, d̄) (2.19)

It is interesting to contrast this approach to the results of [23]. In that paper, properties

of the geometry were derived from microstates by evaluating two-point functions in the

CFT. Assuming that the two-point functions do not renormalize from weak to strong

coupling, this provides a direct probe of the geometry, but it is not easy to reconstruct

the geometry directly. Despite this, one can see very nicely that coarse graining leads to

classical gravitational descriptions, in accordance with our findings.

In [18] it was shown that the geometries corresponding to a classical curve are regular

provided |F′(s)| is different from 0 and the curve is not self intersecting. In our setup we

sum over continuous families of curves which generically smoothes the singularities. The

price that one pays for this is that the solutions will no longer solve the vacuum type

IIB equations of motion, instead a small source will appear on the right hand side of the

equations. Since these sources are subleading in the 1/N expansion and vanish in the

classical limit, they are in a regime where classical gravity is not valid and they may well

be cancelled by higher order contributions to the equations of motion.

The distribution corresponding to a generic state |ψ〉 =
∏∞

k=1(c
i†
k )Nki |0〉 can be easily

computed

f(d, d̄) =
∏

k,i

(di
kd̄

i
k)

Nki e−di
k
d̄i

k (2.20)

As a check, we will verify that (2.10) is satisfied. To do so, we need to come up with an

operator which reproduces the left-hand side of (2.10) upon anti-normal ordering. In view

of (2.9), this is relatively easy to implement, for example in |F′(s)|2 we simply need to

replace

di
kd̄

i
k → di

kd̄
i
k − 1. (2.21)

We will continue to write expressions like |F′(s)|2 in order to not clutter the notation, but

always keep in mind that shifts like (2.21) may be necessary in order to keep track of the

proper normal ordering of the operator in question. Using (2.21) it is then easy to show

that (2.10) is satisfied. Indeed, (2.21) is equivalent to the following condition

Q1 =
Q5

L
N

∫ L

0

∫

d,d̄
f(d, d̄)|F′(s)|2ds (2.22)
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and this is satisfied as a consequence of
∑

kNki
= N1N5. More explicitly

Q5

L
N

∫ L

0

∫

d,d̄
f(d, d̄)|F′(s)|2ds =

Q5

L
N

∫

d,d̄
f(d, d̄)

(

µ2 4π2

L2
L

∞
∑

k=1

k(di
kd̄

i
k − 1)

)

=

= µ2 4π2

L2
Q5

(

∑

k

kNki

)

= Q1. (2.23)

To go from the first line to the second we have used the following identity

∫

d,d̄
(dd̄)ke−dd̄ = 4π

∫ ∞

0
drr2k+1e−r2

= 2πk!. (2.24)

2.3 Reparametrization invariance and microcanonical vs canonical

There is an important subtlety that we need to address. We wish to study the phase space

of curves of fixed length. The phase space of curves of arbitrary length is very easy, it simply

consists of an infinite set of harmonic oscillators. The length of the curve is measured by

some operator N̂ . The constraint N̂ = N is however first class in the language of Dirac,

because [N̂ , N̂ ] = 0 (or in classical language, the length Poisson commutes with itself).

First class constraints generate a gauge invariance. In the present case, the operator N̂

also generates a gauge invariance, which is simply the shift of the parametrization of the

curve,

F(s) → F(s + δs). (2.25)

This follows immediately from the commutation relations of N̂ with the oscillators.

Therefore, we have two possibilities: we can either not impose the length constraint,

and include an extra factor exp(−βN̂ ) in the calculations, where we choose β such that

the expectation value of N̂ is precisely N . This would be like doing a canonical ensemble,

and for many purposes this is probably a very good approximation.

If we insist on fixing the length however, we also have to take the gauge invariance into

account. Therefore, once we include the length constraint, it is impossible to distinguish

curves whose parametrization is shifted by a constant. In particular, the expectation value

of F(s) will always be zero, because the only meaningful quantities to compute are those

of gauge invariant operators, and F(s) is not gauge invariant. Notice that f1, f5 and A are

gauge invariant so for those it is not a problem.

We also need to improve the map we discussed above a little bit: we need to project

the measure (2.15) on loop space onto the submanifold of phase space of curves of fixed

length. It is not completely trivial to determine the right measure. To get an idea we will

do the simple example of two oscillators.

We consider C
2 with the usual measure. We wish to restrict to the submanifold

N = a1|z1|2 +a2|z2|2, and we wish to gauge fix the U(1) symmetry that maps zk → eiεakzk.

What is the measure that we should use? In general, if we have a three-manifold with a

U(1) action, and we gauge fix this U(1) the measure on the gauge-fixed two-manifold is

simply the induced measure as long as the U(1) orbits are normal to the gauge fixed two-

manifold. So if we integrate a gauge-invariant operator over the gauge fixed two-manifold,
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this is the same as integrating it over the entire three-manifold, but dividing by the length

of the U(1) orbit through each point. Call the length of this orbit at the point P `(P ). On

the three-manifold (given by N = a1|z1|2 + a2|z2|2) we have the induced measure. If we

call this equation f = 0, then the induced measure on the three-manifold is d4xδ(f)|df |,
with |df | the norm of the differential df . So all in all we can write the integral of a gauge

invariant quantity A on the two-dimensional submanifold as
∫

d4xA(x)
δ(f)|df |

`(P )
. (2.26)

The length of the U(1) orbit is rather tricky, for general a1, a2 the orbits do not even close.

So we will assume that these numbers are integers. Then up to an overall constant that

depends only on ai the length of the orbit is almost everywhere

`(P ) =
√

∑

a2
i |zi|2 (2.27)

with some pathologies if some of the zi vanish.

Interestingly enough, we now see that |df | and `(P ) cancel each other. Thus the only

modification in the measure will be to include an extra delta function of the form

δ(N −
∑

k

kdk d̄k) (2.28)

in phase space density. As long as we integrate gauge invariant quantities this will yield

the right answer. Thus, in (2.15) and in (2.20) we should include the appropriate delta

function.

Inserting the delta function is just like passing from a canonical to a microcanonical

ensemble. For many purposes the difference between the two is very small, and not relevant

as long as we consider the classical gravitational equations of motion only. We will therefore

in the remainder predominantly work in the canonical picture, commenting on the difference

with the (more precise) microcanonical picture when necessary.

2.4 An example: the circular profile

In the following we will consider the instructive example of a circular profile. First we

will compute the geometry due to a classical circular curve and then compare the result

with the geometry obtained following the prescription in section 2.2. This will effectively

correspond to a slightly smeared circular profile.

2.4.1 Classical profile

We consider the following profile

F 1(s) = a cos
2πk

L
s, F 2(s) = a sin

2πk

L
s, F 3(s) = F 4(s) = 0 (2.29)

which describes a circular curve winding k times around the origin in the 12-plane. In order

to simplify our discussion, we focus on the simplest harmonic function f5. Plugging (2.29)

into (2.1) it is straightforward to compute

f5 = 1 +
Q5

√

(x2
1 + x2

2 + x2
3 + x2

4 + a2)2 − 4a2(x2
1 + x2

2)
(2.30)
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where the value of a is fixed by the condition (2.6)

Q1 = Q5

(

2πk

L
a

)2

.

In order to evaluate the various integrals it will be convenient to Fourier transform the

x-dependence. Using

1

|x|2 =
1

4π2

∫

d4u
eiu.x

|u|2 (2.31)

we can write f5 in the following equivalent way

f clas
5 = 1 +

Q5

4π2

∫

d4u
eiu.x

|u|2 J0(a
√

u2
1 + u2

2) = (2.32)

= 1 + J0

(

a
√

−∂2
1 − ∂2

2

)

Q5

|x|2 (2.33)

Writing f5 in this somewhat formal way has the advantage that it can be more easily

compared to the quantum expression obtained in the next section. As we will explain in

section 4.1, the other harmonic functions can be obtained from the “generating harmonic

function”

fv = 1 + Q5J0



a

√

(

2πk

L
v2 + i∂1

)2

+

(

2πk

L
v1 − i∂2

)2




1

|x|2 . (2.34)

For example, putting v1 = v2 = 0 immediately reproduces (2.32). The geometry can be

written in a more familiar form by performing the following change of coordinates

x1 = (r2 + a2)1/2 sin θ cos ϕ , x2 = (r2 + a2)1/2 sin θ sin ϕ

x3 = r cos θ cos ψ , x4 = r cos θ sin ψ. (2.35)

In terms of these coordinates, the harmonic functions f1,5 become in the near horizon limit

(i.e. dropping the one)

f5 = fv|v=0 =
Q5

r2 + a2 cos2 θ
, f1 = ∂vi∂vifv|v=0 =

Q1

r2 + a2 cos2 θ
(2.36)

As a consistency check, we notice that ¤f5 is a delta function with a source at the location

of the classical curve, to be precise ¤|x−F(s)|−2 = −4π2δ(4)(x−F(s)). One indeed finds

¤f5 = − Q5

4π2L

∫ L

0
ds

∫

d4ueiu.(x−F(s)) = (2.37)

= −Q54π
2

L

∫ L

0
dsδ(x1 − a cos

2πk

L
s)δ(x2 − a sin

2πk

L
s)δ(x3)δ(x4) = (2.38)

= −4π2Q5δ(x
2
1 + x2

2 − a2)δ(x3)δ(x4). (2.39)
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2.4.2 Quantum profile

In a quantum theory it is impossible to localize wave packets arbitrarily precisely in phase

space. Therefore in the quantum theory we expect to obtain a profile that is something

like a minimal uncertainty Gaussian distribution spread around the classical curve. If we

take the classical circular curve (2.29) then we associate to it the density matrix (2.17) and

subsequently the phase space density (2.15). Working this out we find out that

f(d, d̄) = ((d1
k + id2

k)(d̄
1
k − id̄2

k))N/ke−
P

l,i di
l
d̄i

l . (2.40)

We have ignored the delta function (2.28) here and expect (2.40) to be valid for large

values of N/k. It is therefore better thought of as a semiclassical profile rather than the

full quantum profile.

According to (2.18) the harmonic function f5 is now given by

f5 = 1 +
Q5

4π2
N

∫ L

0
ds

∫

d,d̄
f(d, d̄)

∫

d4u
1

|u|2 eiu.(x−F(s))+
P

l
u2µ2

2l (2.41)

where we have used (2.31) and the constant
∑

l
u2µ2

2l appears due to the fact that we want

to compute a normal ordered quantity instead of an anti-normal ordered one. The function

F(s) depends on an infinite set of complex oscillators di
l̃
. It can be easily seen that the

contribution for the oscillators different from d1
k and d2

k cancels exactly against the normal

ordering constant u2µ2/2l mentioned above. Furthermore, by performing the following

change of variables

d±k =
1√
2
(d1

k ± id2
k) (2.42)

we see that the integral over d−k can be easily performed and we are left with the following

expression (once we express d+
k , d̄+

k in polar coordinates and integrate over the angular

variable)

f5 = 1 +
Q5

4π2

∫

d4u
eiu.x

|u|2 e
µ2

4k
(u2

1
+u2

2
)

∫ ∞

0
dρ

ρ2N/k+1

(N/k)!
e−ρ2

J0(µ
1√
k

√

u2
1 + u2

2ρ). (2.43)

The integral over ρ can be done explicitly (see equations (A.2) and (A.3)) and we are left

with

fquantum
5 = 1 + LN/k

(

a2

4N/k

(

∂2
1 + ∂2

2

)

)

Q5

|x|2 (2.44)

with Ln the Laguerre polynomial of order n. Notice that, besides the approximation of

ignoring the δ function (2.28) in the distribution, this result is exact in N/k. In order to

relate both results recall that

Ln(x) =
n

∑

m=0

(−1)mn!

(n − m)!(m!)2
xm

which allows to find the following expansion for large values of N/k

LN/k(
a2ρ2

4N/k
) = J0(aρ) − 1

N/k

a2ρ2

4
J2(aρ) + . . . (2.45)

– 10 –



J
H
E
P
1
2
(
2
0
0
6
)
0
6
3

From this we see explicitly that in the limit N/k À 1 the quantum geometry coincides with

the classical one. More precisely, around asymptotic infinity the harmonic functions can be

written as a series expansion in a2/r2. If we focus on a given term a2p/r2p for some fixed

(but arbitrarily large) p then the coefficient of such term tends to the classical coefficient as

N/k tends to infinity. Note, however, that for finite N/k the quantum harmonic function is

a finite order polynomial in a2/r2 (of degree N/k ) which contains a large number of terms

that are singular at the origin (and that will re-sum only in the strict N/k infinite limit).

These divergences at r = 0 may sound like a disaster, but they are actually unphysical

and due to the fact that we ignored the delta function (2.28) in the distribution (2.40).

Including the delta function will impose a cutoff on the ρ integral in (2.43), and since all

singular terms are due to the large ρ behavior of the integrand in (2.43) the cutoff will

remove the singularities in f5.

From this discussion it is clear that we can trust our semi-classical computation pro-

vided N/k is large and we do not look at the deep interior of the solution.

As for the case of the classical curve, it is instructive to compute ¤f5 for this case

¤f5 = −4π2Q5δ(x3)δ(x4)A(x1, x2) (2.46)

A(x1, x2) =

∫ ∞

0
dρρJ0(

√

x2
1 + x2

2ρ)LN/k

(

a2ρ2

4N/k

)

(2.47)

Until here we have not used any approximation. Using identity (A.3) in the appendix and

approximating exp( a2ρ2

4N/k ) ≈ 1 one obtains

A(x1, x2) =
e−N/k r2/a2 (

N/k r2/a2
)N/k

(N/k − 1)!a2
(2.48)

with r2 = x2
1 + x2

2. In the limit N/k → ∞ A(x1, x2) approaches δ(r2/a2−1)
a2 and the classical

and quantum results agree. For large N/k A(x1, x2) is approximately a gaussian around

r2 ≈ a2 and width 1/
√

N/k, indeed, using Stirling’s formula

A(x1, x2) ≈
√

N/k√
2π

e−N/k(r2/a2−1)(r2/a2)N/k (2.49)

So the quantum geometry corresponds to a solution of the equations of motion in presence

of smeared sources. The width of the smeared source goes to zero in the limit N/k → ∞,

as expected.

2.5 Dipole operator

To each supergravity solution we can associate a ”dipole operator” defined by

Dsugra =

∫ L

0
|F(s)|2ds. (2.50)

This operator simply measures the average spread in the R
4 plane of the curve. It will

become momentarily clear why we call this a dipole operator. It is instructive to com-

pute (2.50) for a curve dual to a generic CFT state |ψ〉 =
∏∞

k=1(c
i†
k )Nki |0〉, i.e.:

Dsugra = N
∫

d,d̄

∫ L

0
|F(s)|2f(d, d̄)ds (2.51)

– 11 –



J
H
E
P
1
2
(
2
0
0
6
)
0
6
3

Using the expression for the phase space density (2.20) and performing a similar compu-

tation to the one leading to (2.23) we get

Dsugra = µ2L

(

∑

k

1

k
Nki

)

(2.52)

This happens to agree, up to normalization, with the CFT dipole operator defined in [24].

There it was shown that a thermodynamic ensemble that includes this dipole operator

reproduces the thermodynamic behavior of the small black ring.

3. A metric for a more general conical defect?

The aim of this section is to shed some light on the claim of [18] appendix C, where it

is shown that there is no conical defect metric with arbitrary opening angles. The main

ingredient in the proof was the requirement of smoothness of the metric. We will try here

to relax this requirement by looking at metrics obtained by coarse graining an ensemble of

(possibly non- smooth) metrics.

The starting point is the supersymmetric conical metric [13, 14]

ds2

N
= −(r2+γ2)

dt2

R2
+r2 dy2

R2
+

dr2

r2 + γ2
+dθ2+cos2 θ(dψ+γ

dy

R
)2+sin2 θ(dϕ+γ

dt

R
)2 (3.1)

where N is the AdS radius and 2πγ is the opening angle. It is well known that every

supersymmetric conical metric is defined by its angular momentum and N . The metric (3.1)

is precisely identical to the metric that we would have found in the near-horizon limit in

section 2.4.1 if we would also have computed the one-forms A,B and evaluated (2.1), see

e.g. [18] for a detailed discussion. The relation between γ and k works out to be γ = 1/k.

The construction in section 2.4.1 therefore provides a construction of conical defect metrics

with k integer, but for k non-integer the construction in section 2.4.1 fails. The reason is

that the classical curve F(s) needs to satisfy
∫ L
0 F(s)ds = 0, as F(s) does not have a

zero-mode, and this is only true if k is an integer and the curve closes.

In order to try to construct a more general conical defect metric, we first notice that

according to (2.39), the source for the metric has to be contained in a circle of radius a in

the x1, x2-plane. The most general souce term satisfying these requirements is

F1(s) = a cos[f(s)], F2(s) = a sin[f(s)], F3(s) = F4(s) = 0 (3.2)

where f(s) is some arbitrary function which has to satisfy

∫ L

0
eif(s)ds = 0 (3.3)

because F(s) does not contain a zeromode. In addition, the source (2.29) is invariant

under rotations in the x1, x2-plane. To accomplish this we need to coarse grain over all
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U(1) rotations of (3.2). This is most easily done by introducing polar coordinates x1+ix2 =

ueiϕ, x3 + x4 = veiψ so that the U(1) average can be expressed as

f5 = 1 +
Q5

2πL

∫ 2π

0
dξ

∫ L

0

ds

|ueiϕ − aeif(s)+iξ |2 + v2

f1 = 1 + a2 Q5

2πL

∫ 2π

0
dξ

∫ L

0

f ′(s)2ds

|ueiϕ − aeif(s)+iξ |2 + v2

A = −a
Q5

2πL

∫ 2π

0
dξ

∫ L

0

if ′(s)eif(s)+iξds

|ueiϕ − aeif(s)+iξ |2 + v2
. (3.4)

The constraint (2.6) on the curve now reads

Q1 = a2 Q5

2πL

∫ 2π

0
dξ

∫ L

0
f ′(s)2ds =

a2Q5

L
< f ′2 > (3.5)

Here and in the following by < g(s) > we simply mean

< g(s) >=

∫ L

0
g(s) ds. (3.6)

It is straight forward to evaluate the integrals in (3.4) to get

f5 = 1 +
Q5

h
(3.7)

f1 = 1 +
Q1

h
(3.8)

A = aQ5
< f ′ >

L

u2 + v2 + a2 − h

2h
dϕ (3.9)

with h2 = (u2 + v2 + a2)2 − 4a2u2. In order to put it in a form which resembles the conical

defect one as much as possible, one has to make the following change of coordinates

u2 = (r2 + a2) sin2 θ, v = r cos θ (3.10)

Using these new coordinates, the various ingredients of (2.1) become

f5 =
Q5

r2 + a2 cos2 θ

f1 =
Q1

r2 + a2 cos2 θ

A = α
a
√

Q1Q5

r2 + a2 cos2 θ
sin2 θdϕ

B = −α
a
√

Q1Q5

r2 + a2 cos2 θ
cos2 θdψ

ds2
4 = (r2 + a2 cos2 θ)(

dr2

r2 + a2
+ dθ2) + r2 cos2 θdψ2 + (r2 + a2) sin2 θdϕ2

C = − Q5r
2 sin2 θ

r2 + a2 cos2 θ
dψ ∧ dϕ (3.11)
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where α2 = a2 Q5

Q1
(<f ′>

L )2 = 1
L

<f ′>2

<f ′2>
is a constant introduced for later convenience. Next

we rescale r by a factor of
√

Q1Q5

R and define γ = α 2π
<f ′> , and after some straightforward

algebraic manipulations we end up with

ds2

√
Q1Q5

= −
(

r2 + γ2
)

(
dt

R
)2 + r2(

dy

R
)2 +

dr2

r2 + γ2

+

(

dθ2 + sin2 θ(dϕ − αγ
dt

R
)2 + cos2 θ(dψ − αγ

dy

R
)2

)

+
(1 − α2)γ2

r2 + γ2 cos2 θ

(

sin2 θdΣ2
1 + cos2 θdΣ2

2

)

C

Q5
= (r2 + γ2 cos2 θ)

dt

R
∧ dy

R
+

α2γ2 − r2 sin2 θ

r2 + γ2 cos2 θ
dψ ∧ dϕ

−αγ

(

cos2 θ
dt

R
∧ dψ + sin2 θ

dy

R
∧ dϕ

)

(3.12)

where we defined

dΣ2
1 = sin2 θdϕ2 +

(

r2 + γ2 cos2 θ
)

(
dt

R
)2

dΣ2
2 = − cos2 θdψ2 + (r2 + γ2 cos2 θ)(

dy

R
)2

This metric is a conical defect metric for α = 1, so the question is which values of γ

are compatible with α = 1. To analyze this, we recast the constraints on f(s) for α = 1

here

∫ L

0
eif(s)ds = 0 (3.13)

(
∫ L

0
f ′(s)ds

)2

= L

∫ L

0
(f ′(s))2 =

(

2π

γ

)2

. (3.14)

However, according to Schwarz’s inequality,

(
∫ L

0
f ′(s)ds

)2

≤ L

∫ L

0
(f ′(s))2 (3.15)

for integrable functions f ′(s) with equality if and only if f ′(s) is a constant. Thus, α ≤ 1

and α = 1 only if f ′(s) = const. Interestingly, the metric (3.12) is in general a perfectly

acceptable metric, since α ≤ 1 is precisely the condition for the absence of CTC’s as one

can derive using the results in [27]. If α = 1 then f ′(s) = const together with (3.13) imply

that f(s) = 2πks/L for some nonzero integer k, and γ = 1/k. We can therefore indeed

only construct conical defect metrics with γ = 1/k and k integer. For k noninteger, we

find a bound on α

α2 ≤
[

1

γ

]2

γ2 (3.16)

with [x] the largest integer less than or equal to x. Indeed, we cannot come arbitrarily

close to a noninteger conical defect metric in this way.
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4. Thermal ensembles

In the following we consider the geometry corresponding to various thermal ensembles of

interest.

4.1 M=0 BTZ

We start by considering the ensemble corresponding to the M = 0 BTZ black hole. In

principle one should consider a micro-canonical ensemble with states of fixed level

N̂ |ψ〉 ≡
∑

k

kci†
k ci

k|ψ〉 = N |ψ〉

We will, instead, consider a canonical ensemble, since in the large N limit the difference

between the two should vanish. The corresponding thermal ensemble is characterized by

the following density matrix1

ρ =
∑

Nk,Ñk

|Nk〉〈Nk|e−βN̂ |Ñk〉〈Ñk|
Tre−βN̂

(4.1)

where |Nk〉 is a generic state labelled by collective indices Nk

|Nk〉 =
∏

k

1√
Nk!

(c†k)
Nk |0〉

and we have chosen a normalization so that 〈Nk|Ñk〉 = δNk ,Ñk
. The value of the potential

β has to be adjusted such that 〈N̂〉 = N . It is clear that

ρ =
∏

n

ρk, ρk = (1 − e−kβ)

∞
∑

n=0

e−nkβ|k, n〉〈k, n| (4.2)

with |k, n〉 = 1√
n!

(c†k)n|0〉. Then the full distribution will simply be the product f(d, d̄) =
∏

k f
(k)

dk,d̄k
with

f
(k)

dk,d̄k
= (1 − e−kβ)e−dk d̄k

∞
∑

n=0

e−nkβ

n!
(dk d̄k)

n = (1 − e−kβ) exp (−(1 − e−kβ)dk d̄k)

We start by computing f5, this is given by

f5 =
Q5

4π2L
N

∫

d4u

∫ L

0
dr

∫

d,d̄
f(d, d̄)

e
P

k
u2µ2

2k eiu.(x−F(r))

|u|2 (4.3)

The first term in the exponential is due to the fact that we want to compute a normal

ordered quantity, see the discussion around (2.16). The d, d̄-integrals are gaussian and can

easily be performed,

f5 =
Q5

4π2

∫

d4u
exp

(

− |u|2µ2

2

∑∞
k=1

1
k(1−e−kβ)

+ |u|2µ2

2

∑∞
k=1

1
k + iu.x

)

|u|2 . (4.4)

1We are going to ignore the i-index in some equations where it does not play any role. We hope that

this will not create any confusion.
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In the limit β ¿ 1 the first sum in the exponent can be approximated by

∞
∑

k=1

1

k(1 − e−kβ)
=

∑

k

1

k
+

π2

6β
+ O(log β) (4.5)

and inserting this in (4.4) we see that the divergent piece drops out, as expected, and we

are left with

f5 = Q5
1 − e

− 3β

π2µ2
x2

x2
.

This resembles the AdS answer f5 = Q5/x
2, but with exponentially suppressed corrections

that render f5 finite at x = 0.

The computation of f1 is slightly more involved but completely analogous to that of

f5. It is given by

f1 = ∂vi∂vi







Q5

4π2L
N

∫

d4u

∫ L

0
dr

∫

d,d̄
f(d, d̄)

e

P

k

„

|u|2µ2

2k
− 2π2kµ2|v|2

L2

«

eiu.(x−F(r))+iv.F′(r)

|u|2







∣

∣

∣

∣

∣

v=0

.

(4.6)

Notice that one can obtain all harmonic functions by taking appropriate vi derivatives of

the quantity between parentheses and then putting vi = 0. The d, d̄ integral is again

∞
∑

k=1

k

1 − e−βk
=

∞
∑

k=1

k +
π2

6β2
+ O(1/β)

we arrive at the following result

f1 =
2π4µ2

3L2β2
Q5

1 − e
− 3β

π2µ2
x2

x2
= Q1

1 − e
− 3β

π2µ2
x2

x2

where in the last equality we have used the correct values for Q1, L, µ together with the

value for β to be found below in (4.7). Using similar computations one can infer that

Ai = 0.

As we already mentioned, β has to be fixed in such a way that 〈N̂ 〉 = N . Since the

occupation number of a oscillator ck is

〈N̂k〉 = TrρN̂k =
e−kβ

1 − e−kβ

we find that

N = 〈N̂〉 = −4 ∂β

∞
∑

k=1

log(1 − e−βk) =
2π2

3

1

β2

and therefore we fix

β =
π
√

2/3√
N

. (4.7)

Obviously, the thermodynamic limit N À 1 corresponds to β ¿ 1.
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A final comment is in order. The geometry obtained differs from the classical M = 0

BTZ black hole by an exponential piece. Following [16, 20] we could put a stretched horizon

at the point where this exponential factor becomes of order one, so that the metric deviates

significantly from the classical M = 0 BTZ solution. Thus, using this criterion we find for

the radius of the stretched horizon2

r0 ≈ µ

β1/2
(4.8)

with corresponding entropy proportional to N3/4. This exceeds the entropy of the mixed

state from which the geometry was obtained, the latter grows as N1/2. We refer to the

conclusions for a further discussion of this mismatch.

4.2 Condensate plus thermal ensemble: the small black ring

In this section we consider a slightly more complicated example, namely an ensemble

consisting of a condensate of J oscillators of level q plus a thermal ensemble of effective

level N − qJ . As argued in [19, 24] such an ensemble should describe (in a certain region of

parameter space) a small black ring of angular momentum J and dipole (or Kaluza-Klein)

charge q.

Using the techniques developed in the previous sections we can compute the generating

harmonic function for this case as well and we find

fv = Q5LJ

(

µ2

4q

[

(

2πq

L
v2 + i∂1

)2

+

(

2πq

L
v1 − i∂2

)2
])

e−
µ2π2|v|2

2L2 (N−qJ) 1 − e
− 2|x|2

µ2D

|x|2
(4.9)

where D ≈ π
√

2/3(N − qJ)1/2 so that the geometry is purely expressed in terms of the

macroscopic quantities N,J and q.

We would like to make contact between this geometry and the geometry corresponding

to small black rings studied in [24]. As we will see, in the limit of large quantum numbers

both geometries reproduce the same one point functions.

In order to see this, first note that the exponential factor e
− 2|x|2

µ2D will not contribute

(as it vanishes faster than any power at asymptotic infinity). Secondly notice that we can

use (2.45) in order to perform the formal expansion

LJ

(

µ2

4q
O

)

= J0(µ

√

J

q
O1/2) + . . . (4.10)

In order to estimate the validity of this approximation we can think of O as being propor-

tional to 1/|x|2. On the other hand µ
√

J/q can be roughly interpreted as the radius of

the black ring (see [27, 24], where this parameter is called R). Hence the approximation

is valid for large values of J at a fixed distance compared to the radius of the ring, very

much in the same spirit as what happened in the case of a circular profile.

2The same value is obtained if we compute the average size of the curve in R
4, r

2
0 ≈ 〈|F |2〉.
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Using (2.34) and the above approximations it is then straightforward to compute the

harmonic functions

f5 =
Q5

r2 + µ2 J
q cos θ

, f1 =
Q1

r2 + µ2 J
q cos θ

(4.11)

where we have used a coordinate system analogous to the one used in the discussion of the

circular profile (see (2.35). Hence in this approximation the geometry reduces exactly to

that of the small black ring studied in [24].

4.3 Generic thermal ensemble

In the following we consider a generic thermal ensemble, where each oscillator cki is occupied

thermally with a temperature βki . We further will assume that βk± for the directions 1, 2

is equal to βk± for the directions 3, 4. Restricting to, say, directions 1, 2 we are led to

consider the following distribution

f(d, d̄) = exp
(

−(1 − e−β
k+ )d+

k d̄+
k − (1 − e−β

k− )d−k d̄−k

)

. (4.12)

Following the same steps as for the case of the M = 0 BTZ black hole we obtain

f5 = Q5
1 − e

− 2|x|2

µ2D

|x|2 (4.13)

f1 = Q1





1 − e
− 2|x|2

µ2D

|x|2 − J2

4Nµ4D2
e
− 2|x|2

µ2D



 (4.14)

A =
µ2JR

2



2
e
− 2|x|2

µ2D

µ2D
− 1 − e

− 2|x|2

µ2D

|x|2



 (cos2 θdφ + sin2 θdψ) (4.15)

where (|x|, θ, φ, ψ) are spherical coordinates for R
4 in terms of which the metric reads

ds2 = dr2 + r2(dθ2 + cos2 θdφ2 + sin2 θdψ2).

We see that, rather surprisingly, the geometry depends only on a few quantum numbers

N,J and D which are given in terms of the temperatures by

N = 2
∑

k

k

(

e−β
k+

1 − e−β
k+

+
e−β

k−

1 − e−β
k−

)

(4.16)

J = 2
∑

k

(

e−β
k+

1 − e−β
k+

− e−β
k−

1 − e−β
k−

)

(4.17)

D = 2
∑

k

1

k

(

e−β
k+

1 − e−β
k+

+
e−β

k−

1 − e−β
k−

)

. (4.18)

As a result, the information carried by the geometry is much less than that carried by the

ensemble of microstates. In fact, only N and J are visible at infinity while D sets the size of

the “core” of the geometry. We interpret this as a manifestation of the no-hair theorem for

black holes. The derivation in this section assumes that the temperatures are all sufficiently
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large. By tuning the temperatures, it is possible to condense one (like in the small black

ring case) or more oscillators. If this happens, we should perform a more elaborate analysis,

and we expect that the dual geometrical description3 corresponds to concentric small black

rings. In this case the configuration will depend on more quantum numbers than just

N,J,D, in particular we will find solutions where the small black rings carry arbitrary

dipole charge. Thus, once we try to put hair on the small black hole by tuning chemical

potentials appropriately, we instead find a phase transition to a configuration of concentric

small black rings, each of which still is characterized by just a few quantum numbers.

5. Conclusions

In this paper we proposed and studied a map from 1/2-BPS pure and mixed states in the

D1-D5 system to ten-dimensional geometries that become 1/2-BPS solutions to the type

IIB supergravity equations of motion in the classical limit. We restricted our attention to

states associated to the bosonic fluctuations of the D1-D5 system in the four transverse non-

compact directions, following the work of [15]. To construct the map we took advantage

of the results of [25, 26] where the symplectic form on the appropriate space of 1/2-BPS

solutions were obtained. We also crucially used the idea that coherent states should be the

most classical ones. An important subtlety that we ran into is that we should work with

the phase space of curves in R
4 of fixed length proportional to N . This can be taken into

account by inserting explicit delta-functions in the phase space densities that we found. It

turns out that it is technically very difficult to work with this delta-function, so instead

we decided to work with a canonical ensemble where curves of length ` are weighted with

weight exp(−β`) and β is chosen in such a way that the expectation value of ` is N . At

large N both methods should agree, but there are important differences at finite N . When

we studied the simplest example of a circular curve, we found using the canonical ensemble4

a metric which is very singular in the interior, but we could qualitatively argue that these

singularities will disappear once we properly work in the microcanonical ensemble. It would

be interesting to study this in more detail. We also saw that the quantum answer indeed

corresponds to a small approximately gaussian smearing of the classical curve, whose width

vanishes as N → ∞.

In section 3 we have elaborated somewhat on the claim of [18] that one cannot have

a conical defect metric with arbitrary opening angle. We studied ensembles of smooth

metrics that resemble as much as possible conical defect metrics. It turns out that one

can indeed only construct conical defect metrics with deficit angle 2π/k with k integer,

and explicitly gave metrics that come closest to conical defect metrics with other opening

3It is not difficult to see that the harmonic functions now will take the form of multiple Laguerre

polynomials with differential operator arguments acting on the generating harmonic function of the M = 0

BTZ solution.
4More precisely, we used a microcanonical approach to associate a state to a classical curve and then

a canonical approach to associate a phase space density to it. If we would have used a canonical ap-

proach throughout we would have found a simple exponential phase space density which does not yield any

singularities.
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angles. Though we did not go out of our way to prove that our construction is the most

general one, it is hard to see how one could avoid our conclusion.

In section 4 we studied different thermodynamic systems and their geometric descrip-

tion. This was in fact the main motivation for this work. We first looked at the M = 0

BTZ ensemble, and found a “quantum” metric that is exponentially close to the classical

one. There are no corrections to the metric that scale as an inverse power of the radius of

AdS, and therefore all one-point functions (except the one giving the total mass) vanish,

in agreement with general expectations. Interestingly, we found that the natural place

for the stretched horizon is at r0 ≈ µβ−1/2, with corresponding entropy ∼ N3/4. This

is is different from the results in [15 – 17, 20] where a stretched horizon was found which

does yield the correct entropy of order N1/2. This stretched horizon was found using the

average wave number with a suitable occupation number, but first computing the average

wave number and then the average spread of the curve is not the same as computing the

average spread directly. We were therefore unable to find a natural interpretation for this

stretched horizon in our approach. We tried a few other possible definitions of the stretched

horizon, such as the average size of the curve, or by looking at curvature invariants of the

metric, but in all cases we found the same result. It is possible that there exists a better

definition, for example one based on the absorption cross section, which does yield the

right entropy, and this is an interesting subject for further study which may affect other

small black holes in string theory as well. Incidentally, having a larger stretched horizon

with more entropy does not contradict any law of physics, but a smaller one would, since

that would violate the Bekenstein-Hawking bound. A larger one could simply mean that

there are many other microstates with less supersymmetry whose geometry also fits inside

this particular stretched horizon.

Another example we studied was the small black ring. We managed to reproduce the

geometry and one-point functions discussed in [24], thus providing further evidence that

the microscopic picture of [19] is the correct one. Again, there is a stretched horizon whose

associated entropy (N − qJ)3/4 deviates from the expected result (N − qJ)1/2 just like the

M = 0 BTZ case.

Finally we considered more general ensembles with different temperatures for each

oscillator species. It turns out that the metric is characterized by only three quantum

numbers, N,J and D, where N and J are the energy and angular momentum as seen at

infinity, and D is related to the size of the core of the solution, i.e. to the stretched horizon.

This is very reminiscent of the no-hair theorem. The situation changes once we allow

some oscillators to have become macroscopically occupied, i.e. form a condensate just as

in Bose-Einstein condensation. In this case we expect to find a geometry corresponding to

concentric small black rings, as discussed at the end of section 4.3, and this would clearly

be worth exploring further.

There are several avenues for further study, such as exploring in more detail the rela-

tion between CFT correlation functions and supergravity solutions. In principle our setup

predicts the one-point functions of all operators in arbitrary half-BPS states and ensem-

bles, and it would be interesting to try to reproduce this from the CFT point of view.

Another direction is to extend our approach to the 1/4-BPS case which does admit black
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hole solutions with a macroscopic horizon. Unfortunately, there is to date no complete

classification of 1/4-BPS solutions, but perhaps one can already make progress using the

subset of solutions that have been found so far. We leave all these issues to future work.
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=
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∫ ∞
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∫ ∞
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